
Known errata in A Pipelined Multi-core MIPS Machine,
Hardware Implementation and Correctness Proof

Saarland University, Computer Science

Institut für Rechnerarchitektur und Parallelrechner

December 16, 2015

Nine Shades of RAM

1. p.91, typo in the name of the address input, should be

Sout(h) = h.S(Sa(h))

A Basic Sequential MIPS Machine

2. p.145, figure 99: the figure is wrong, should be

10

0 1

rd

5

5

5

5 5

rt

jal

rtype
15

Cad

3. p.146, figure 100: typo in the name of the fields of the BCE unit, should be

bf [3 : 1] and bf [0].

Pipelining

4. p.164: typo in the text, should be

...into 5 circuit stages cir(i) with i ∈ [1 : 5], such that...

5. p.167: typo in the text, should be

For k ∈ [1 : 5] circuit stage cir(k) is input for register stage k and...

6. p.189: typos in the proof, should be

gprintπ = lrestπ

= lresiσ

= gpriniσ

and

gprintπ = C.4tπ

= Ciσ

= gpriniσ

in the cases of resp. load and not-store instructions.

1



7. p.198, figure 123: the figure is wrong, the multiplexer is missing, should be

10

fullk

uek

stallk

stallk+1

hazk

fullk−1

0

reset

Caches and Shared Memory

8. p.214, proof of Lemma 8.1: typo in the first line, should be

hhit(h.ca, a) ≡ h.ca.s(a.c) 6= I ∧ h.ca.tag(a.c) = a.t

9. p.218: definition of the outputs of the fully associative cache, should be

h.ca.data(b) and h.ca.s(b)

10. p.223: typo in the notation, should be

aca(i).Xt = aca(ht.ca(i)).X

11. p.232: typo in the definition of semantics of the global access, should be

...

∀j : sprot(j) = C2(aca(j).s(a),mprot)

...

12. p.246, figure 137, comment:

For souta there is a multiplexer forcing the state of the abstract cache to invalid in case of /phit.
For the slave state soutb the corresponding mux is not present. The reason is, that the slave only
participates in the protocol (and the output of circuit C2 is only used) if bhit = 1.

13. p.254, figure 140: the figure is wrong, the multiplexer is missing, should be

10 reset

2p

req

nextgrant

2p 2p

2p

grant

2p

02p−11

14. p.262, lemma 8.16: one case is not covered in the proof. When considering G(i)t−1 we should
neither be in state w(i)t−1 (which is present) nor take transition (9) (which is missing). However,
the statement of the lemma still holds, while the proof is easily fixable by adding the missing case.

2



15. p.286, lemma 8.51: typo in the proof, should be

q = max {t′ | wait(i)t
′
∧ t′ < t}

16. p.290, lemma 8.56: typo in the formulation, in the second line it should be

¬acc(i, k).f

17. p.291, lemma 8.57: typo in the formulation, should be

X ∈ {s, tag, data}

18. p.294, lemma 8.58: typo in the formulation, should be

X ∈ {s, tag, data}

19. p.298, lemma 8.62: the proof uses ¬acc(i, k).f

In the proof of lemma 8.64 (one step) the application of lemmas 8.58 (stable slaves) and the data
transfer lemma 8.35 (m1) does not work out. Splitting cases on localw in the three lemmas concerned
fixes this problem.

20. Lemma 8.35 (m1) ignores the multiplexer at the s input of circuit C2 forwarding the next state

M = aca(j).st+1(badin(j)t)

in case of a local write. Thus the correct statement is

sprotout(j)t+1 =

{
C2(M,mprotin(j)t) localw(j)t ∧ ca(j).pat = badin(j)t

C2(soutb(j)t,mprotin(j)t) otherwise

=

{
C2(aca(j).st+1(badin(j)t),mprotin(j)t) localw(j)t ∧ ca(j).pat = badin(j)t

C2(aca(j).st(badin(j)t),mprotin(j)t) otherwise

21. Lemma 8.58 (stable slaves) must hold for one more cycle in the absence of local writes

q(j) ∈

{
[s(i, k) + 2 : t] localw(j)s(i,k)+1 ∧ ca(j).pas(i,k)+1 = a

[s(i, k) + 1 : t] otherwise

In cycle s(i, k)+1 only local writes to address a can end. If no such write ends, one concludes with
lemma 8.57 (unchanged cache lines)

aca(j).Xs(i,k)+1(a) = aca(j).Xs(i,k)+2(a)

22. In the proof of lemma 8.64 (one step) one uses in the case w(i)e(i,k) first the data transfer lemma
8.35 with t = s(i, k) + 1 and then lemma 8.58 literally to conclude

sprotout(j)s(i,k)+2 =


C2(aca(j).ss(i,k)+2(a),mprotin(j)s(i,k)+1).(ch, di) localw(j)s(i,k)+1 ∧

ca(j).pas(i,k)+1 = a

C2(aca(j).ss(i,k)+1(a),mprotin(j)s(i,k)+1).(ch, di) otherwise

= C2(aca(j).se(i,k)(a),mprotout(i)e(i,k)).(ch, di)

A Multi-core Processor

23. p.329: typo in the definition of the instruction cache interface, should be

Iinπ =

{
ica.pdout[63 : 32] imaπ[2] = 1

ica.pdout[31 : 0] imaπ[2] = 0

24. p.329: typo in the definition of the data cache interface, should be

dmoutπ = dca.pdout

25. p.340: index i is incorrect, should be iy

3


