
Integrated Semantics of Intermediate-Language C and
Macro-Assembler for Pervasive Formal Verification of
Operating Systems and Hypervisors from VerisoftXT?

Sabine Schmaltz and Andrey Shadrin

Saarland University, Germany
{sabine,shavez}(at)wjpserver.cs.uni-saarland.de

Abstract. Pervasive formal verification of operating systems and hypervisors is,
due to their safety-critical aspects, a highly relevant area of research. Many im-
plementations consist of both assembler and C functions. Formal verification of
their correctness must consider the correct interaction of code written in these
languages, which is, in practice, ensured by using matching application binary
interfaces (ABIs). Also, these programs must be able to interact with hardware.
We present an integrated operational small-step semantics model of intermediate-
language C and Macro-Assembler code execution for pervasive operating systems
and hypervisor verification. Our semantics is based on a compiler calling conven-
tion that defines callee- and caller-save registers. We sketch a theory connecting
this semantic layer with an ISA-model executing the compiled code for use in a
pervasive verification context. This forms a basis for soundness proofs of tools
used in the VerisoftXT project and is a crucial step towards arguing formal cor-
rectness of execution of the verified code on a gate-level hardware model.

1 Introduction

For operating systems, correctness of implementation is highly desirable – in partic-
ular for safety-critical embedded systems such as cars or airplanes. Hypervisors are
employed to partition system resources efficiently, providing strictly-separated execu-
tion contexts in which operating systems can again be run. To argue implementation
correctness of a system consisting of both a hypervisor and operating systems, formal
verification can provide solid evidence if done in a pervasive way.

The L4verified kernel [1] is an example of a recent operating system verification
effort that has achieved impressive code verification results. A detailed memory model
for low-level pointer programs in C was applied in combination with separation logic
[2]. The assembler portions have not been verified in conjunction with the C code yet to
our knowledge. Judging from their choice of C semantics, however, we are certain that
all gaps present can be closed with minimal additional effort when the right models and
theories are applied. In this paper, we present a description of such a theory for C and
assembler code verification.
? Work partially funded by the German Federal Ministry of Education and Research (BMBF) in

the framework of the Verisoft XT project under grant 01 IS 07 008.

The FLINT group, on the other hand focuses on assembler code verification us-
ing their framework XCAP [3], which they successfully applied in [4] and [5]. So far,
however, no integration of results into a semantics stack with high-level programming
languages has been reported yet.

In a pervasive verification effort that aims at code verification above assembler-
level, compiler correctness is crucial. During the Verisoft project, a compiler for the
C-like language C0 was verified [6]. A mildly optimizing compiler that translates C-
minor (a subset of C) to PowerPC assembly code has been verified by Xavier Leroy et
al. [7, 8] and used in a pervasive verification effort by Andrew Appel [9]. Both these
efforts made use of interactive theorem provers.

In the scope of this paper we provide descriptions of the Macro-Assembler (short:
MASM, section 2) and the C intermediate-language (C-IL, section 3) semantics we use
to construct the integrated C-IL+MASM-semantics we propose in section 4. We com-
bine a rather high-level assembler-semantics with a low-level C-intermediate-language
semantics. This results in a model in which function calls between the two languages
have the straightforward semantics we expect according to compiler calling conven-
tions. We describe how we apply pervasive theory in section 5 to prove that our inter-
language-call-semantics is sound with respect to the underlying machine-code execu-
tion model. Note that all of this can still be considered work-in-progress since none of
the proofs have been checked in a theorem prover.

As main contributions of this paper, we consider, first, our unconventional choice to
design both C- and assembler-semantics in such a way that they can interoperate easily
– resulting in a model that accurately captures the compiler calling convention –, and,
second, our demonstration that such an integrated model can be easily justified using
pervasive compiler correctness theory.

2 Macro-Assembler Semantics

One might wonder why, in a pervasive verification effort, there is any need for a high-
level assembler semantics. Operating systems and hypervisors implemented in C and
assembler are generally compiled to machine code – a machine-code execution model
technically is fully sufficient to argue about such systems. However, doing this, we
would discard all the comfort and gain of speed that appropriate abstraction can provide.
We consider a machine-code execution model that we refer to using the name ISA-
Assembler. It is characterized by the following: Instructions are executed as atomic
transitions – an instruction pointer register points to the next instruction in memory.

Concerning code verification, the ISA-Assembler-model has one particular draw-
back: It provides no useful abstraction in terms of control flow. While this is true for
the language of machine code, the assembler code used in operating systems has struc-
ture we can exploit during formal verification: Our assembler code is called from or
calls functions of a stack-based programming language. Instead of executing machine
code instructions from the configuration’s memory at the instruction pointer, we apply
abstraction techniques normally used in high-level programming language semantics
definitions. We gain an easy-to-understand model of high-level assembler code execu-
tion that can be integrated with a C model in a straightforward way. This comes at a

cost: In order to obtain a more simple model of assembler code execution, we enforce a
certain structure of code which may exclude well-behaving assembler programs. How-
ever, all code we want to verify has this structure.

We introduce Macro-Assembler (MASM) as a restricted assembler language: All
targets of branch or jump instructions are either local labels or names of functions – we
model the control flow of Macro-Assembler as a labeled transition system. In order to
make integration of MASM with a stack-based programming language very simple, we
abstract from the concrete stack layout in memory by introducing a stack component in
form of a list of abstract stack frames to the configuration.

In [10], a stack-based typed low assembly language is proposed as a target language
for code verification. The authors can encode any compiler calling conventions in their
type system since everything about the stack including the stack frame header layout is
exposed. In our work we abstract the stack away hiding all details that are compiler rel-
evant. Additionally, we provide a feature found in some assembler languages: uses lists
that specify the registers used by an assembler function. The MASM-compiler inserts
instructions that save/restore these registers in the prologue/epilogue of the compiled
assembler function. In the following, we present formal definitions to elaborate on the
structure of MASM.

Configuration A Macro-Assembler configuration

c = (c.M, c.regs, c.s) ∈ confMASM

consists of a byte-addressable memoryM : B8k → B8 (where k is the number of bytes
in a machine word and B ≡ {0, 1}), a component regs : R → B8k that maps register
names to their values, and an abstract stack s : frame∗MASM. Each frame

s[i] = (p, loc, saved, pars, lifo)

contains the name p of the assembler function we are executing in, the location loc of
the next instruction to be executed in p’s body, a component saved that is used to store
values of callee-save registers used by the function, a component pars that represents
the parameter region of the stack frame, and a component lifo that represents the part of
the stack where data can be pushed and popped to/from.

Program A Macro-Assembler program π is a procedure table that maps function
names p to procedure table entries:

π(p) = (npar,P, uses)

Here, npar describes the total number of machine word parameters of the function,
P : instr∗MASM is a list of Macro-Assembler instructions representing the procedure
body, and uses: R∗ is a list of register names to be saved and restored.

In case the following instructions are not provided by the underlying hardware, we
implement them as assembler macros: call, ret, push, pop. An assembler macro is sim-
ply a shorthand for a sequence of assembler instructions. MASM can easily be extended
by the notion of user-defined macros, however, we have not done so yet.

instrnext(c) = instr(i) MASM-to-ISA(c)→
ISA
d′

π ` c →
MASM

ISA-to-MASM(d′)
(INSTR)

instrnext(c) = goto l
π ` c →

MASM
setloc(c, l)

(GOTO)

instrnext(c) = ifnez r goto l c.regs(r) = 08k

π ` c →
MASM

incloc(c)

(GOTO-FAIL)

instrnext(c) = ifnez r goto l c.regs(r) 6= 08k

π ` c →
MASM

setloc(c, l)

(GOTO-SUCC)

instrnext(c) = push r
hd(c.s) = (p, loc, saved, pars, lifo)

π ` c →
MASM

setlifo(incloc(c), c.regs(r) ◦ lifo)

(PUSH)

instrnext(c) = call p π(p).npar− 4 ≤ hd(c.s).lifo
callframe(c, p, framenew) c′ = droplifo(c, π(p).npar− 4)

π ` c →
MASM

c′[s := framenew ◦ incloc(c
′).s]

(CALL)

instrnext(c) = pop r lifo 6= [] hd(c.s) = (p, loc, saved, pars, lifo)
π ` c →

MASM
setlifo(setreg(c, r, hd(lifo)), tl(lifo))

(POP)

instrnext(c) = ret
π ` c →

MASM
dropframe(restoresaved(c))

(RET)

Table 1. Operational semantics of MASM

Semantics Since Macro-Assembler is compiled to machine code, Macro-Assembler se-
mantics for basic instructions can be inferred from the semantics of ISA-Assembler. The
main differences stem from the distinct modeling of control-flow: In ISA-Assembler, we
have a global instruction pointer whereas in Macro-Assembler we have local program
location and stack-abstraction. Whenever a Macro-Assembler instruction accesses the
stack-region, instead of updating/reading the memory, we update/read the correspond-
ing component of the abstract stack. In case it is not trivially possible to find an equiv-
alent update on the abstract stack, we consider the program in question illegal – or
unsuitable for use with our semantics. This concerns, in particular, all instructions that
explicitly update the stack pointer registers (this would break our stack abstraction) or
write to addresses of the physical stack that describe return addresses or previous frame
base addresses.

In the call-rule presented in table 1, callframe(c, p, framenew) is a predicate over a
configuration c, a function p, and a frame f that enforces following conditions:

framenew.p = p, framenew.loc = 0, framenew.saved = c.regs|π(p).uses

framenew.pars[π(p).npar− 1 : 4] = readlifo(c, π(p).npar− 4), framenew.lifo = []

All registers in the uses list of the function are saved in the new frame, and parameters
that are passed on the stack are moved from the lifo-component of the top-most frame to
the pars-component of the new frame. The calling convention we assume states that the
first four parameters are passed in registers (space on the stack is reserved nonetheless),
while the remaining parameters are passed on the stack (in right-to-left order).

3 C Semantics

As countless others have noted before [11, 12], there is not "the" C semantics: the term
"C" describes an equivalence class of semantics that fall under the scope of what is
commonly called the programming language C and its standard library. Depending on
architecture and compiler, semantics may differ for the underspecified areas.

t ∈ T t ∈ TP

struct tC ∈ T tC ∈ TC

array(t, n) ∈ Tptr t ∈ T, n ∈ N
ptr(t) ∈ Tptr t ∈ T
fptr(t, T) ∈ Tptr t ∈ T, T ∈ T∗

Table 2. The set T of types of C-IL

val(b, ii) ∈ val b ∈ Bi

val(b, ui) ∈ val b ∈ Bi

val(B, struct tC) ∈ valstruct B ∈ (B8)∗

val(b, t) ∈ valptr b ∈ Bsizeptr , t ∈ Tptr

lref((v, o), i, t) ∈ vallref v ∈ V, o, i ∈ N, t ∈ Tptr

fun(f) ∈ valfun f ∈ Fname

Table 3. The set val of values of C-IL

Since C is a programming language with an overwhelming complexity – much of
which is redundant –, we consider an intermediate language for C that we call C-IL.
Note that, instead of defining Pascal with C syntax (as has been done in Verisoft), we
now consider a semantics that really captures the low-level features of C. We do not
consider side-effects in expressions, and neither do we put much effort on modeling C
syntax. These, we leave to the layer above, where we can define C based on C-IL.

The intermediate language we consider has been designed with some very specific
features – optimized for integration with Macro-Assembler. Like MASM, C-IL is a goto-
language defined in the form of a labeled transition system.

Since we want to do lowest-level operating systems verification, we only consider
a global byte-addressable memory and an abstract stack. We do not consider the heap
as a separate memory since the notion of a heap only exists when there is some form of
memory allocation system available (e.g. the one provided by the standard library or the
operating system). Pointer arithmetics is allowed on pointers to the global memory to
the full extent possible. For local variables we restrict pointer arithmetics to calculating
offsets inside local variable memories. In the semantics we propose, every memory
access corresponds to dereferencing a left value – a left value is either a pointer to the
global memory or a reference to some offset in a local variable.

In interrupt descriptor tables, we need to store function pointer values, thus, we
explicitly model the addresses of functions. Obviously, these cannot be derived from C
semantics since they depend only on where in memory the program resides, thus we
give them as parameter to the semantics.

One main issue of C is its dependency on the underlying architecture and compiler.
We suggest that semantics for C should be parameterizable to make it applicable to at
least the most common cases.

In the following, V is a set of variable names, F is a set of field names, Fname is a
set of function names. We use the notation X ∗ ≡

⋃∞
n=1 Xn ∪ {[]} to describe the set

of lists/strings with elements from the set X . A list of length n with elements from X
is given by x = (xn−1, . . . , x0) = x[n − 1 : 0] ∈ Xn and we define the shorthand

x[i]
def
= xi.

Types For every instance of C-IL, we assume a set of primitive types TP to be given
such that TP ⊂ {void} ∪

⋃∞
i=0{ii,ui} describes a set of basic signed (i) and unsigned

(u) integer types of size i (given in bits). Usually, we consider sizes which are multiples
of 8. Further, we assume a set TC of struct type names to be given.

We define the set of types T inductively in table 2. Array types are given by their
element type and length. Function pointer types are identified by their return value type
and a list of their parameters’ types. Note that struct types are always identified by the
corresponding composite type name tC . The actual type definition of a struct type can
be found by looking it up in the program’s struct type declaration (defined later).

Values We represent most values using bit-strings or byte-strings. This is owed to
the fact that C-IL is designed for use in conjunction with hardware models. For struct
types, we consider byte-strings as their value (see table 3). We only need them in order
to model struct assignment since access to a field of a struct is performed by calculating
the corresponding left value followed by a precise memory access. A pointer to the
global memory is a value val(b, t) consisting of an address and a pointer type.

Due to the stack abstraction used, we have to treat pointers to local variables differ-
ently: We represent these local references lref((v, o), i, t) by variable name v and offset
o inside that variable. Additionally, we have the number i of the stack frame the local
reference refers to and a pointer type t.

For functions f we do not need the exact address of (since we do not need to store
their function pointers in memory), we introduce a symbolic function value fun(f).

Expressions We define the set of expressions E in table 4. O1 and O2 are sets of
operators (table 5) defined for the compiler in question. A unary operator is a partial
function ⊕ : val ⇀ val, whereas a binary operator is a function ⊕ : val × val ⇀
val. Operators are provided for each type they are meaningful for. All expressions are
strictly typed in C-IL – when translating from C to C-IL, type casts need to be inserted
explicitly.

Statements C-IL uses a reduced set of statements (see table 6) consisting of assign-
ment, goto, if-not-goto, function call, procedure call, and corresponding return state-
ments. Goto statements specify the target destination in form of a label (the index of the
target statement in the program).

Configuration A C-IL configuration

c = (M, s) ∈ confC-IL

consists of a global, byte-addressable memory M : B8k → B8 and a stack s ∈
frame∗C-IL which is a list of C-IL-frames. A C-IL-frame

s[i] = (ME , rds, f, loc) ∈ frameC-IL

consists of a local memory componentME : V → (B8)∗ which maps variable names
to local byte-offset-addressable memories (represented as lists of bytes), a return des-
tination component rds : valptr ∪ vallref ∪ {⊥} which is either a pointer to where the
return value of the function is going to be stored when it returns or the value ⊥ denot-
ing the absence of a return destination, a function name f which describes the function
we are executing and a location loc ∈ N which describes where in f ’s body execution
should continue.

constants c c ∈ val
variable names v v ∈ V
function names f f ∈ Fname

unary operation ⊕e e ∈ E and ⊕ ∈ O1

binary operation (e1 ⊕ e2) e1, e2 ∈ E and ⊕ ∈ O2

ternary operation (e ? e1 : e2) e, e1, e2 ∈ E
type cast (t)e t ∈ T and e ∈ E
dereferencing ∗e e ∈ E
address-of &e e ∈ E
field access (e).f e ∈ E and f ∈ F
size of type sizeof(t) t ∈ T
size of expression sizeof(e) e ∈ E

Table 4. The set E of C-IL-expressions

unary operators O1 = {-,∼,!}
binary operators
O2 = {+,-,*,/,%, <<,>>,<,
>,<=, >=,==, !=,&, |, ,̂&&, ||}

Table 5. Operators of C-IL

e0 = e1 e0, e1 ∈ E
goto l l ∈ N
ifnot e goto l e ∈ E, l ∈ N
e0 = call e(E) e0, e ∈ E, E ∈ E∗

call e(E) e ∈ E, E ∈ E∗

return, return e e ∈ E

Table 6. The set S of C-IL-statements

Program A C-IL program

π = (F ,VG, TF)

consists of a function tableF , a declaration of global variables VG : (V×T)∗ consisting
of pairs of variable names and types, and a struct type declaration TF : TC → (F×T)∗
which returns for every composite type name a declaration of its fields.

A function table entry

π.F(f) = (npar,V,P)

contains the number of parameters npar of the function f, a local variable and parameter
declaration V : (V× T)∗ and a function body P : S∗.

Context Configuration and program are not enough: we need additional information
in order to execute a C-IL program. For this, we introduce a context θ which provides
all missing information. It contains information on the endianness of the underlying
architecture (i.e. byte-order used), the addresses of global variables in memory, function
pointer addresses (given by a partial, injective function θ.Fadr), offsets of fields in struct
types, sizes of struct types, a type-casting function that matches the behavior of the
compiler, and the type used by the compiler for results of the sizeof-operator.

Expression Evaluation Expressions are evaluated by a function that returns either a
C-IL-value or the special value ⊥ that denotes that the expression cannot be evaluated:

[e]π,θc ∈ val ∪ {⊥}

Depending on the expression, we may need the complete state, i.e. configuration, pro-
gram and context, to evaluate it. Since expression evaluation is defined in the obvious
way, given the choices we made, we omit its definition to save space.

stmtnext(c) = e0 = e1

π, θ ` c →
C-IL

incloc(writeθ(c, [&e0]θ,πc , [e1]
θ,π
c))

(ASSIGN)
stmtnext(c) = goto l
π, θ ` c →

C-IL
setloc(c, l)

(GOTO)

stmtnext(c) = ifnot e goto l zero([e]θ,πc)

π, θ ` c →
C-IL

setloc(c, l)

(IFNOTGOTO-SUCC)

stmtnext(c) = ifnot e goto l ¬zero([e]θ,πc)

π, θ ` c →
C-IL

incloc(c)

(IFNOTGOTO-FAIL)

stmtnext(c) = call e(E) ∨ stmtnext(c) = e0 = call e(E)

is-function([e]θ,πc , f) callframe(c, f, E, framenew)

π, θ ` c →
C-IL

c[s := framenew ◦ incloc(c).s]
(CALL)

stmtnext(c) = return
π, θ ` c →

C-IL
dropframe(c)

(RETURN)

stmtnext(c) = return e c.rdstop 6= ⊥
π, θ ` c →

C-IL
writeθ(dropframe(c), c.rdstop, [e]

θ,π
c)

(RETURNVAL1)
stmtnext(c) = return e c.rdstop = ⊥

π, θ ` c →
C-IL

dropframe(c)

(RETURNVAL2)

Table 7. Operational semantics of C-IL

Memory Semantics On the one hand we have byte-addressable memories, on the other
we have typed values. We provide functions readθ : confC-IL × (valptr ∪ vallref)→ val
and writeθ : confC-IL × val× (valptr ∪ vallref)→ confC-IL which, respectively, derefer-
ence a pointer value in a given configuration (read from memory) or write a given value
to memory, resulting in a new configuration. To specify their effect, similar functions
(readθE , writeθE) are provided to read and write a local variable/parameter (identified by
variable name) from a stack frame.

Note that, since we do not model addresses of local variables explicitly (this would
either expose stack layout or require a more sophisticated memory), our semantics car-
ries the limitation that pointers to local variables cannot be stored in memory.

Operational Semantics In table 7, we give operational semantics of C-IL. zero is a
predicate that is true when the given C-IL-value is a representation of zero. The next
statement to be executed in the given configuration is computed by stmtnext from pro-
gram/location of the top-most stack frame. With incloc and dropframe we produce con-
figurations in which, respectively, the location counter of the top-most frame is incre-
mented or the top-most frame is simply removed from the stack.

In the call-rule, the new stack frame framenew is chosen nondeterministically accord-
ing to the following constraints (represented by the predicate callframe(c, f, E, framenew)):

∀0 ≤ i < npar : readθE(framenew, vi, 0, ti) = [E[i]]θ,πc

∀npar ≤ i < len(V) : len(framenew.ME(vi)) = size(ti)

framenew.loc = 0, framenew.f = f, framenew.rds =

{
[&e0]

θ,π
c for function call

⊥ for procedure call

Here, (vi, ti) = V[i] is the i-th declaration in function f ’s parameters and local vari-
able declaration V = π.F(f).V , and npar = π.F(f).npar is the number of parameters
of the function f . Note that we only place a strict constraint on the parameter values:
initial content of local variables is chosen nondeterministically with appropriate size for
the declared type.

4 Integrated C-IL+MASM-Semantics

We extend both C-IL and MASM in such a way that we can do the final step of integrat-
ing them into C-IL+MASM. To achieve this, we define a compiler calling convention
and apply it to interface the two languages. The goal of this integration is to ’slice’
the model stack horizontally, providing a self-contained model to argue about a system
layer that involves both C-IL and MASM code execution.

In the first Verisoft project, whenever assembler code is encountered, the compiler
simulation relation is applied to reach an equivalent ISA-Assembler-configuration from
which to execute the assembler code. The proposed integrated semantics simply pro-
vides another layer of abstraction on top of such a model. The assembler verification
approach that was used in the VerisoftXT project is based on translating assembler
code to C so that it can be verified using a C verification tool [13]. We can benefit from
the abstraction we introduce here in a soundness proof for the assembler verification ap-
proach: Instead of proving a simulation between ISA-Assembler and C-IL (which would
require a substantial amount of software conditions), we can prove a simpler simulation
between MASM and C-IL. In turn, we have to prove correct compilation for MASM.

There is a restriction on the interaction between C-IL and MASM: currently, we only
allow primitive values to be passed between C-IL- and MASM-functions.

4.1 Calling Convention

The compiler calling convention describes the interface between the caller and the
callee. In our experiments, we consider a compiler calling convention given by the
following rules:

1. The first four parameters are passed through Registers Rp1 , Rp2 , Rp3 , Rp4 .
2. The remaining parameters (if existent) are passed on the stack in right-to-left order.

There is space reserved on the stack for parameters passed in registers.
3. The return value is passed through register Rrv.
4. All callee-save registers (given byRcallee ⊂ R) must be restored before return.
5. The callee is responsible for cleaning up the stack.
6. Rp1 , Rp2 , Rp3 , Rp4 , Rrv /∈ Rcallee.

4.2 Semantics

In order to obtain an integrated model of C-IL and MASM, there are two things left to
do: define how we model the state of the combined semantics and define transitions.

Probably the most basic way to define a configuration of C-IL+MASM is to con-
sider a list of alternating C-IL- and MASM-configurations that represents the call stack
between the two languages. The top-most configuration we consider active while we
consider the rest of them inactive. One observation that can be made is that in both
semantics we use the same byte-addressable memory, which can be shared.

In order to eliminate redundancy, we introduce the notion of execution context for
C-IL and MASM. An execution context is a configuration of the corresponding language
where the memory componentM is removed:

s ∈ contextC-IL ≡ frame∗C-IL, (regs, s) ∈ contextMASM ≡ (R → B8k)× frame∗MASM

Another observation we make is that in order to integrate the two semantics, we
need to add information to inactive C-IL-execution-contexts: It would be very nice to
know where the C-IL-execution context will store the return value that is passed in Rrv
when it becomes active again. Another notion we want to capture in the semantics is
that the C-IL-compiler may rely on the callee-save convention being respected by the
programmer: When the callee-save registers have modified values, there is no guarantee
whatsoever that execution of the C-IL-code will continue as expected. We define the
inactive C-IL-execution-context

(rds, regscallee, s) ∈ contextinactive
C-IL

which consists of a return destination pointer rds ∈ valptr ∪ vallref ∪ {⊥}, a function
regscallee : Rcallee ⇀ B8k which describes the content of callee-save registers expected
when control is returned to the execution context, and a C-IL-stack s ∈ frame∗C-IL.

The last observation is that it is not meaningful to store register values in the inactive
MASM-execution-context, with one exception: we can keep the values of callee-save
registers, since, assuming the C-IL-compiler respects the calling conventions, they will
be restored when control is returned to the context. We define the inactive MASM-
execution-context

(regscallee, s) ∈ contextinactive
MASM

to consist of a callee-save register file regscallee : Rcallee → B8k that holds the values
of callee-save registers belonging to the execution context, and a MASM-stack s ∈
frame∗MASM.

Configuration A C-IL+MASM-configuration

c = (M, ac, sc) ∈ confC-IL+MASM

consists of the same byte-addressable memoryM : B8k → B we have seen before, the
active execution context ac : contextC-IL ∪ contextMASM, and a list of inactive execution
contexts sc ∈ (contextinactive

C-IL ∪ contextinactive
MASM)∗.

Program & Context A C-IL+MASM-program π = (πC-IL, πMASM) is simply a pair of
a C-IL-program and a MASM-program. Since we need context information about the
compiler to execute C-IL, we keep the context θ from C-IL.

Transitions Essentially, we have three types of steps: We perform a pure C-IL- or
MASM-step, an external function from the other language is called, or we return to the
other language. Considering a given configuration, it is easy to decide which of these
has to happen next: Calling a function which is not declared in the current language’s
program must be an external call. Executing a return-statement or -instruction when the
stack of the active context is empty should return to the newest context from the list
of inactive contexts. Everything else is a pure step. Let ext(c) denote a predicate that
checks in the described way whether the next step is an external step. Table 8 shows
inference rules that describe C-IL+MASM’s transitions.

c.ac = s ¬ext(c) π.πC-IL, θ ` (c.M, s)→C-IL c
′
C-IL

π, θ ` c→C-IL+MASM c
[
M := c′C-IL.M, ac := c′C-IL.s

] (PURE-C-IL)

c.ac = (regs, s) ¬ext(c) π.πMASM ` (c.M, regs, s)→MASM c′MASM

π, θ ` c→C-IL+MASM c
[
M := c′MASM.M, ac := (c′MASM.regs, c′MASM.s)

] (PURE-MASM)

c.ac = s ext(c) stmtnext(s, π.πC-IL) = e0 = call e(E)

is-function([e]θ,πc , f) CIL2MASMctxt(c, f, E, regscallee, contextnew)

π, θ ` c→C-IL+MASM c
[
ac := contextnew, sc := ([[&e0]]

θ,π
c , regscallee, incloc(s)) ◦ c.sc

] (C-IL-TO-MASM)

c.ac = (regs, s) ext(c) instrnext(s, π.πMASM) = call p
π.πC-IL(p).npar− 4 ≤ hd(s).lifo s′ = droplifo(s, π(p).npar− 4) MASM2CILctxt(c, p, hd(s).lifo, contextnew)

π, θ ` c→C-IL+MASM c
[
ac := contextnew, sc := (regs|Rcallee , incloc(s

′)) ◦ c.sc
]

(MASM-TO-C-IL)

c.ac = s ext(c) stmtnext(s, π.πC-IL) = return e
hd(c.sc) = (regscallee, s

′) regs′|Rcallee = regscallee regs′(Rrv) = val2bytes([[e]]π,θc)

π, θ ` c→C-IL+MASM c
[
ac := (regs′, s′), sc := tl(c.sc)

]
(RETURN-C-IL-TO-MASM)

c.ac = (regs, s) ext(c) instrnext(s, π.πMASM) = ret
hd(c.sc) = (rds, regscallee, s

′) regs|dom(regscallee) = regscallee c′ = writeθraw((c.M, s′), rds, regs(Rrv))

π, θ ` c→C-IL+MASM c
[
M := c′.M, ac := c′.s, sc := tl(c.sc)

]
(RETURN-MASM-TO-C-IL)

Table 8. Representative choice of transitions from the semantics of C-IL+MASM

Pure Steps For ¬ext(x), we have a pure step: We simply perform a step of the top-most
execution context according to the semantics of the corresponding language.

Call from C-IL to MASM For an external call from C-IL to MASM, a new MASM context
is created and initialized according to the calling convention. The currently active C-IL
context is retired to the list of inactive contexts. Constraints on the nondeterministically-
chosen new context and the callee-save registers expected by the now inactive C-IL-
context are captured in the predicate CIL2MASMctxt(c, f, E, regscallee, contextnew):

contextnew.s = [framenew]
contextnew.regs(Rpi) = [[E[i− 1]]]θ,πc if 1 ≤ i ≤ 4 ∧ i ≤ npar

where npar is a shorthand that denotes π.πMASM(f).npar and [[e]]θ,πc
def
= [e]θ,π.πC-IL

(c.M,c.ac).
The stack of the new active MASM-context consists of a single frame framenew:

framenew.p = f, framenew.loc = 0, framenew.lifo = []

framenew.pars[i] = [[E[i]]]θ,πc , 4 ≤ i < npar

Register content is chosen nondeterministically except for the values of the registers
Rp1 , . . . , Rp4 (parameters passed in registers according to the calling convention). The
remaining parameters are passed on the stack. As a final constraint, the callee-save
registers expected by the retired C-IL-execution-context are the same as in the new
MASM-execution-context:

regscallee = contextnew.regs|Rcallee\π.πMASM(f).uses

Note: since the MASM-compiler guarantees that registers in the uses list will be stored
and restored properly, we only have to consider the remaining callee-save registers.

Return from MASM to C-IL When returning, callee-save registers must have the values
expected by the C-IL-context we return to. The content of the return-value register Rrv
is written to the return destination rds given in the C-IL-context we return to.

Call from MASM to C-IL Calling from MASM to C-IL, we create a new active C-IL-
execution-context and transfer the currently active execution context to the list of inac-
tive contexts. MASM2CILctxt(c, p, lifo, contextnew) enforces the following constraints:

contextnew.s = [framenew]

where
framenew.f = p, framenew.loc = 0, framenew.rds = ⊥

∀npar ≤ i < len(V) : len(framenew.ME(vi)) = size(ti)

∀0 ≤ i ≤ 3 : (i+1) ≤ npar⇒ readθE(framenew, vi, 0, ti) = bytes2val(regs(Rpi+1
), ti)

∀4 ≤ i < npar : readθE(framenew, vi, 0, ti) = bytes2val(lifo[len(lifo)− 1− i], ti)

The first four parameters are taken from registers, we convert their values to C-IL-values
of the type expected by the function. The remaining parameters are passed on the stack
(lifo) in right-to-left order.

Return from C-IL to MASM Callee-save registers of the restored MASM-context stay
the same, the remaining registers get assigned nondeterministically, except for Rrv. We
convert the result of evaluation of the return expression [[e]]θ,πc to its byte-representation
and assign this value to the return value register Rrv.

5 Pervasive Theory

To gain a correctness result over the whole system consisting of hard- and software,
we apply pervasive verification. In the pervasive stack sketched in Figure 1, adjacent
models are always connected by means of simulation theorems in such a way that
the abstraction provided by a higher-up layer is sound with respect to the correspond-
ing lower layer. Our reduction theorems involve placing additional assumptions on the
lower layer’s execution that allow us to construct a more abstract upper layer. We only
use assumptions that we can explicitly guarantee for the code we consider.

We are interested in justifying that our combined C-IL+MASM-semantics indeed
correctly captures the behavior of the underlying ISA-Assembler-execution. In order to
prove this, we make use of compiler correctness for C-IL and MASM. In particular, we
rely on an explicit simulation relation that connects to the underlying ISA-Assembler-
model (we use the term compiler consistency relation to refer to it).

For pure steps, we can simply apply the assumed compiler correctness. Only for
inter-language steps, we need to prove that, given a state in which the compiler simu-
lation holds for the current language, the corresponding compiler consistency relation

hardware simulation

assembler reduction theorem

C+MASM reduction theoremcompiler correctness

Gate−Level Design

Environment

Environment

C+MASM

Abstract Hardware Model

ISA−Assembler

Fig. 1. Model stack for operating systems and hy-
pervisor verification.

C−compiler

correctness

C−IL compiler

correctness

MASM−compiler

correctness

C+MASM

ABI

ABI

ISA−Assembler

C−IL+MASM

Macro−ASM C

Macro−ASM C−IL

Fig. 2. Close-up view of the model stack.

is established. That is, after executing the compiled code of the external call, we reach
an ISA-Assembler-configuration which is consistent with the the configuration of the
abstract machine that has performed the call.

5.1 Compiler Consistency

In the actual formal definitions of the relations described in the following, we applied
earlier results from the Verisoft project [6].

C−IL+MASM

Program
ISA−Assembler

Context Stack

Memory

Processor

Memory

stack

code

stack

code

Fig. 3. Simulation of C-IL+MASM by the
underlying ISA-Assembler-model.

Memory & Code Consistency We con-
sider an ISA-Assembler-memory and a
C-IL+MASM-memory to be consistent
iff they carry identical values on all ad-
dresses except for those from the stack-
or the code-region. The code region con-
tains the compiled code of the program.

MASM: Register Consistency Config-
urations are consistent iff all registers of
the active MASM-execution-context ex-
cept those we abstracted away (instruc-
tion pointer, stack pointers) are the same
in the ISA-Assembler-configuration.

MASM: Stack Consistency Stack consistency describes on the one hand how the ab-
stract stack matches the stack region in an ISA-Assembler-configuration, i.e., for the
stacks of the MASM-contexts, how pars, saved, and lifo are laid out in memory and
pointed to by the stack pointer registers. On the other hand, it also relates the function
name and location pairs found in the abstract stack frames to the instruction pointer
register, respectively the return address fields in the concrete stack layout.

C-IL: Stack Consistency For the C-IL-part, this describes how local memories ME
from C-IL’s stack frames are represented in the concrete stack layout and in the proces-
sor registers (parameters in registers, register allocation for local variables). The base
address of the return destination rds is part of the frame header. As in the MASM-case,
control consistency is expressed over the function name/location pairs occurring in it.

Software Conditions

No Explicit Writes to Stack and Code Region Since we explicitly manage a stack ab-
straction, bypassing this and writing directly to the memory region occupied by the
stack will break stack consistency. Also, we do not consider semantics of self-modifying
code, so the code region shall never be written. To use the described semantics, this
property must be guaranteed (e.g. by performing formal verification).

No Explicit Update of Stack Pointers For maintaining a consistent configuration (w.r.t.
to the assembler execution of the compiled code) for these semantics, we should never
explicitly update the stack pointers. All changes to them currently happen automatically,
as a part of the push, pop, call and ret execution of MASM.

6 Results

The C-IL+MASM-model described here has been applied to extend the baby hypervisor
verification results obtained earlier [14]. In those results, there was merely specification
of the effect of assembler code for the context switch between guest and hypervisor –
with the presented theory, this gap has been closed. Compilation rules from MASM to
ISA-Assembler and compiler consistency relations for both C-IL and MASM have been
specified in full detail for the reduced version of the VAMP-processor used in baby
hypervisor verification.

7 Future Work

The ideas presented can be applied such that the resulting semantics can serve as a basis
for soundness proofs of translation-based assembler verification approaches, as the one
described and implemented by Stefan Maus in the Vx86-tool [13].

In order to have a model on which threading libraries can be verified (including the
assembler portion that actually performs the stack switch), the presented theory can be
be extended to allow stack pointer updates. This work is currently in progress.

For multi-core machines, we need to consider store-buffers. Integrating the results
of Cohen and Schirmer on store-buffer reduction [15] appears to be a useful step.

In order to prove correct execution of compiled code in a multi-core context, we
need to place some restrictions on memory accesses in order to justify that interleav-
ing instructions on C-IL+MASM-level is actually sound with respect to the underlying
execution model. This work is currently in progress using an explicit ownership-model.

In an operating system and hypervisor verification effort, interrupts cannot be ne-
glected. There is work in progress to extend the pervasive theory in such a way that
interrupt handlers can be seen as additional threads interleaved with regular execution.

8 Conclusion

We have presented an integrated semantics of a simple C-intermediate-language and a
high-level assembler language. Choosing identical memory models and stack abstrac-
tion in form of lists of stack frames makes this integration very simple. Distinguishing
formally between active and inactive execution contexts, we are able to precisely model
the calling conventions between C-IL and MASM. Based on earlier results, we spec-
ified compiler consistency relations for C-IL and MASM to justify that the integrated
semantics presented is a sound abstraction of execution of the compiled code.

References

1. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Symposium
on Operating Systems Principles (SOSP), Big Sky, MT, USA, ACM (2009) 207–220

2. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL ’07: Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM (2007) 97–108

3. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers. In: POPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM (2006) 320–333

4. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: Machine context
management. In: TPHOLs. (2007) 189–206

5. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Certifying low-level programs with hardware inter-
rupts and preemptive threads. J. Autom. Reasoning 42(2-4) (2009) 301–347

6. Leinenbach, D., Petrova, E.: Pervasive compiler verification – from verified programs to
verified systems. In: 3rd intl Workshop on Systems Software Verification (SSV08), Elsevier
Science B. V. (2008)

7. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language. Journal
of Automated Reasoning 43(3) (2009) 263–288

8. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7)
(2009) 107–115

9. Appel, A.W.: Verified software toolchain. In: Proceedings of the 20th European conference
on Programming languages and systems: part of the joint European conferences on theory
and practice of software. ESOP’11/ETAPS’11, Springer-Verlag (2011)

10. Morrisett, J.G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly language. In:
Types in Compilation. (1998) 28–52

11. Gurevich, Y., Huggins, J.K.: The semantics of the C programming language. In: Computer
Science Logic, volume 702 of LNCS, Springer (1993) 274–308

12. Papaspyrou, N.S.: A formal semantics for the C programming language. tech. report. (1998)
13. Maus, S., Moskał, M., Schulte, W.: Vx86: x86 assembler simulated in C powered by auto-

mated theorem proving. In: (AMAST 2008), LNCS 5140. (2008)
14. Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated verification of a small hy-

pervisor. In: Proceedings of the Third international conference on Verified software: theories,
tools, experiments. VSTTE’10, Berlin, Heidelberg, Springer-Verlag (2010) 40–54

15. Cohen, E., Schirmer, N.: A better reduction theorem for store buffers. CoRR abs/0909.4637
(2009)

